
Mutation Testing Using Symbolic Execution and Path

Khalid A. Buragga1, Sultan Aljahdali2, Marcel Karam3, Ahmed S. Ghiduk2,4

1
College of Computing and Information Technology, Northern Border University, Saudi Arabia

E-mail: nbu10@nbu.edu.sa
2
College of Computers and Information Technology, Taif University, Saudi Arabia

Email: aljahdali@tu.edu.sa
3
Department of Computer Science, American University of Beirut

Email: marcel.karam@aub.edu.lb
4
Department of Mathematics and Computer Science, Faculty of Science,

Beni-Suef University, Egypt

Email: asaghiduk@tu.edu.sa

Abstract. In this paper, we introduce a new technique for generating set of test

data for mutation testing. This technique automatically generates a set of

program paths that satisfy the branch coverage criterion by implementing a path

generation algorithm proposed by Bertolino and Marré. Then, the proposed

technique symbolically executes the generated set of paths to create a system of

branch conditions for each path and solve this set of conditions to find the

required set of test data for killing the mutants of the program under test. The

technique determines infeasible paths by checking the consistency of each

system of conditions. For each infeasible path, the technique finds, if possible, a

new feasible path. The paper also presents the results of experiments that have

been carried out to evaluate the effectiveness of the proposed technique.

Keywords: mutation testing, symbolic execution, test path, test path generation

1 Introduction

Software testing has two main aspects: test generation and application of a test data

adequacy criterion. A test generation technique is an algorithm that generates test

cases, whereas an adequacy criterion is a predicate that determines whether the testing

process is finished [1]. Several test data adequacy criteria have been proposed, such as

control flow-based and data flow-based criteria. One of the major difficulties in

software testing is the automatic generation of test data that satisfy a given criterion.

Symbolic execution can be used to generate test data for a selected adequacy

criterion. It involves executing a program using symbolic values of variables instead

of numeric values, and requires the determination of program paths that are to be

followed in order to satisfy the selected adequacy criterion. So, the symbolic

execution testing system should incorporate a path selection strategy in which the

expressions produced by the symbolic execution are used to identify the required

paths. Several symbolic execution systems have been built [2-9, 21]. A symbolic

execution system has been developed by Girgis [10, 11] that automatically generates a

subset of program paths according to a certain control flow criterion. This subset is

called the ZOT-subset, since it requires paths that traverse loops zero, one and two

times. The paths of this subset are presented to the user to identify feasible paths, then

the system selects feasible paths from the ZOT-subset that cover a data flow path

selection criterion.

The main contributions of this paper are: introducing a technique for generating set

of test inputs for killing the program mutants by symbolically executing a generated

set of program paths that satisfy the branch coverage criterion. Then, the proposed

technique create a system of branch conditions for each path and solve this set of

conditions to find the required set of test data for killing the mutants of the program

under test. The technique checks path infeasibility by checking the consistency of

each system of conditions and finds, if possible, a new feasible path.

The paper is organized as follows: Section 2 describes the path generation

algorithm of our technique and some basic testing concepts. Section 3 describes the

components of our technique. Section 4 presents the results of experiments that have

been carried out to evaluate the effectiveness of the technique.

2 Background

This section describes the path generation algorithm FTPS implemented in our

system [12] and discuss the ideas of path generation and mutation testing.

2.1 The Path Generation Algorithm

The control flow of a program is represented by a directed graph, called flow-graph.

A directed graph or digraph G = (V, E) consists of a set V of nodes or vertices, and a

set E of directed edges or arcs, where a directed edge e = (T(e), H(e)) is an ordered

pair of adjacent nodes, called Tail and Head of e, respectively. If H(e) = T(é), e and é

are called adjacent arcs. For a node n in V, indegree(n) is the number of arcs entering

it, and outdegree(n) is the number of arcs leaving it. Figure 2 shows the flow-graph

for the example program of Figure 1.

A path P of length q in a digraph G is a sequence of edges P = e1, e2, e3, …, eq,

where T(ei+1) = H(ei) for i = 1 , 2, …, q-1. P is said to be a path from e1 to eq.

The FTPS algorithm uses a flow-graph representation called ddgraph (decision-to-

decision graph), which is particularly suitable for the purposes of branch testing. A

ddgraph, as defined in [12], is a digraph G =(V, E) with unique entry arc e0 and

unique exit arc ek, such that for each node n  V, n  T(e0), n  H(ek), (indegree(n) +

outdegree(n)) > 2, while indegree(T(e0)) = 0 and outdgree(T(e0)) = 1, indegree(H(ek))

= 1 and outdgree(H(ek)) = 0. The arcs of a ddgraph represent branches of a program,

where a branch is a strictly sequential set of program statements uninterrupted by

either decisions or junctions. Figure 3 shows the ddgraph G
1

that corresponds to the

flow-graph of Figure 2. It should be noted that two auxiliary arcs, e0 and e9, have been

added to G
1
 as entry and exit arcs.

The algorithm uses two relations between the dd-graph arcs, namely, the dominance

and implication relations. Let G = (V, E) be a dd-graph with unique entry arc e0 and

unique exit arc ek. The dominance relation between two arcs in G is defined as

follows: An arc ei dominates an arc ej if every path P from the entry arc e0 to ej

contains ei. The implication relation between two arcs in G is defined as follows: An

arc ei implies an arc ej if every path P from ei to the exit arc ek contains ej.

By applying the dominance relation between the arcs of G, a tree (whose nodes

represent the ddgraph arcs) rooted at e0, can be obtained. This is called the dominator

tree DT(G). By applying the implication relation between the arcs of G, a tree (whose

nodes represent the ddgraph arcs) rooted at ek, can be obtained. This is called the

implied tree IT(G). Figure 5 shows the implied tree of the ddgraph G
1
, IT(G

1
). In this

figure, the sequence of arcs PIT = e1, e4, e6, e9 is an implication path in IT(G
1
).

The FTPS algorithm constructs ddgraph paths as follows: it first derives a

dominance or an implication path, and then fills possible discontinuities with a

„suitable‟ path in G. For example, in the path PDT = e0, e4, e5, e7 on DT(G
1
), the

discontinuity between e0 and e4 may be filled with the path P = e2, obtaining the

ddgraph path P = e0, e2, e4, e5, e7. A set of paths  = {P1, …, Pn} is a path cover for a

ddgraph G = (V, E) if for each arc e  E there exists at least one path in 

containing e. For example, the set of paths  = {P1, P2, P3, P4} is a path cover for the

ddgraph G
1
 of Figure 3, where:

 P1 = e0, e2, e3, e4, e6, e9; P2 = e0, e1, e4, e6, e9;

 P3 = e0, e1, e4, e5, e8, e6, e9; P4 = e0, e1, e4, e5, e7, e6, e9.

Fig. 1. Example program

To find a path cover on a ddgraph, Bertolino and Mareé introduced the notion of

unconstrained arcs. The set UE(G) of unconstrained arcs of G can be obtained as

UE(G) = DTL(G)  ITL(G) (1)

where DTL(G) is the set of leaves of DT(G) and ITL(G) is the set of leaves of IT(G).

For the ddgraph G1 of Figure 3, the set of unconstrained arcs is:

UE(G
1
) = DTL(G

1
)  ITL(G

1
) = {e1, e2, e3, e7, e8}

where: DTL(G
1
) = {e1, e2, e3, e7, e8, e9} and ITL(G

1
) = {e0, e1, e2, e3, e5, e7, e8}.

Different path covers can be derived by the algorithm FTPS by implementing

different selection policies. Two selection policies are considered: the minimum-

number-of-paths policy, which aims at reducing the number of paths, and the less-

predicates policy which aims at preventing the generation of infeasible paths.

Fig. 2. The flow-graph for the example program. Fig. 3. DDG G1 for the example program.

Fig. 4. The dominator tree of G1, DT(G1). Fig. 5. The implied tree of G1, IT(G1).

 1

 4

 2

 3

 5

 6

 7

 8

 9

 10

 11

 12

e
0

e
2
 e

1

e
3

e
4

e
5

e
6

e
7
 e

8
 e

9

 1

 4

 7

 8

 12

 13

 -1

e
0

e
1
 e

2
 e

3
 e

4

e
5
 e

6

e
7
 e

8
 e

9

e
9

e
6

e
4
 e

5
 e

7
 e

8

e
0
 e

2
 e

3
 e

1

St. No. Basic Block

 1 INTEGER N,D,R,T,Q 1

 2 READ*, N, D

 3 IF (D.LT.N) THEN

 4 I = N 2

 5 N = D

 6 D = I

 7 END IF 3

 8 Q = 0

 9 R = N

10 T = D

11 10 IF (R.GE.T) THEN 4

12 T = T * 2 5

13 GO TO 10

14 END IF 6

15 20 IF (T.NE.D) THEN 7

16 Q = Q * 2 8

17 T = T / 2

18 IF (T.LE.R) THEN

19 R = R - T 9

20 Q = Q + 1

21 END IF 10

22 GO TO 20

23 END IF 11

24 PRINT*, Q, R

25 END 12

2.2 Mutation testing

In mutation testing, a set of faulty programs p', called mutants, is generated by

seeding faults into the original program p. A mutant is generated by making a single

small change to the original program. For example, Error! Reference source not

found. shows a first-order mutant in the mutated program p' generated by changing

the and (&&) operator in the original program p into the or (||) operator in the mutated

p'. In addition, Error! Reference source not found. gives a second-order mutant by

changing two operators (&&) and (>) in p into (||) and (<) in p'. A transformation rule

that generates a mutant from the original program is known as a mutation operator

[14].
Table 1. An Example of Mutation Operation

Original Program p
Mutated Program p'

First Order Mutant Second Order Mutant

if (a >0&& b> 0) if (a>0 || b > 0) if (a > 0 || b < 0)

Each mutated program p' will be executed using a test set T. If the result of running

p' is different from the result of running the original program p for any test case in T

(i.e., p'(t) ≠ p(t) for any t of T), then the mutated program p' is said to be “killed”,

otherwise it is said to have “survived”. The adequacy level of the test set T can be

measured by a mutation score [15] that is computed in terms of the number of mutants

killed by T as follows.

𝑀𝑆 𝑃, 𝑇 =
𝑜𝑓 𝑘𝑖𝑙𝑙𝑒𝑑 𝑀𝑢𝑡𝑎𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜 . 𝑜𝑓 𝑀𝑢𝑡𝑎𝑛𝑡𝑠 − 𝑛𝑜 .𝑜𝑓 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑀𝑢𝑡𝑎𝑛𝑡𝑠
 (𝟐)

The aim of mutation testing is finding test set T [16, 17].

2.3 Test-Coverage Criteria

A test-coverage criterion is used to determine whether a program has been

adequately tested. It specifies a set of program entities that must be exercised by the

test cases on which the program is executed during the testing process.

2.3.1 Control-Flow Criteria

The most test coverage criteria included in this category are:

 All-nodes test coverage criterion requires that each node in the control-flow graph

be executed by some test case. Therefore, it is also called statement testing.

 All-edges test coverage criterion requires that each edge in the control-flow graph

be traversed by some test case during some program execution. This form of

testing is also called branch testing.

 All-paths criterion requires that every complete path (i.e., a path from the entry

node to the exit node of the control-flow graph) in the program be tested. This

form of testing is also called path testing.

2.3.2 Data-Flow Criteria

Given a set of test cases, let Q be the set of complete paths exercised by the

program executions for these test cases. For each of the data flow based test-coverage

criterion, the conditions that Q must meet for the test criterion to be satisfied are given

below:

 All-defs is satisfied if Q includes a def-clear path from every definition to some

corresponding use (c-use or p-use).

 All-c-uses is satisfied if Q includes a def-clear path from every definition to all of

its corresponding c-uses.

 All-p-uses is satisfied if Q includes a def-clear path from every definition to all of

its corresponding p-uses.

 All-uses is satisfied if Q includes a def-clear path from every definition to each of

its both c-uses and p-uses.

 All-du-paths is satisfied if Q includes all du-paths for each definition. Therefore if

there are multiple paths between a given definition and a use, they must all be

included.

3 The Proposed Technique

This section describes our symbolic execution based mutation testing technique.

Figure 6 gives the block diagram of the proposed technique. It performs the following

actions:

1. analysis and reformatting of source code of the program under test (PUT).

2. generating a set of program paths that satisfy the branch coverage criterion.

3. symbolically executing the generated paths and creating a system of conditions for

each paths.

4. checking the feasibility of the generated paths by checking the consistency of the

system of conditions.

5. finding a set of test inputs for each feasible path by solving the generated set of

conditions.

6. running the tested program and its mutants using the generated test inputs and

finding the killed mutants.

In the following subsections, the components of the technique are described

further.

3.1 Analysis phase

The analysis and reformatting module is an adapted version of the testing system

proposed by Girgis and Woodward [18]. This module classifies program statements

and reformats some of them to facilitate the construction of the program flow graph.

A file is produced, which contains the reformatted version of the source code, and this

is passed to the path generation module. This module seeds the original program with

errors and generates set of mutants of the program under test (PUT).

3.2 Path generation phase

This module performs the following actions in order to generate a set of program

paths that satisfy the branch coverage criterion.

1. Constructing the control flow graph of the PUT.

2. Forming the ddgraph of the PUT (see section 2.1).

3. Finding for each arc in the ddgraph the set of its dominance arcs and the set of its

implication arcs by using the algorithm given in [19]. Using these sets of arcs, the

dominator tree DT(G) and the implied tree IT(G) of the ddgraph are built. Then,

the set of unconstrained arcs, UE(G), of the given program is found from the

dominator tree and the implied tree by using eq. (1), as described in section 2.1.

4. Building a path cover  using the FTPS algorithm, as described in section 2.1.

The paths in  are derived one at a time. To construct each path, FTPS selects an

as yet uncovered unconstrained arc eu, using the chosen path selection policy, the

min-no-of-paths or the less-pred, and then finds a path from entry arc e0 to the exit

arc ek, using arc eu. This procedure is repeated until all unconstrained arcs are

covered.

At the end of this phase, a subset of program paths are generated that cover all the

edges of the program ddgraph.

3.3 Symbolic execution phase

In this phase, the generated paths in the second phase are symbolically executed,

and a set of branch conditions is created for each path, as described in [10]. During

the symbolic execution of a path, the system assigns a symbolic value to each input

variable. These symbolic values are supplied from the list (A1, A2, A3,..). For

example, the symbolic values assigned to the input variables N and D of the example

program are A1 and A2, respectively. So, the branch conditions created will be in

terms of these symbolic input values. A symbol table is used to keep track of the

symbolic values and the states of program variables during the symbolic execution of

a path. The state of each variable is monitored in order to detect the presence of any

data flow anomalies. Note that, during program execution, a variable could be in one

of four possible states: undefined (state U), defined (state D), defined and then

referenced (state R), anomalous (states UR, DU or DD).

Fig. 6. The block diagram of the proposed technique.

3.4 Feasibility checking

This module checks the consistency of the generated set of branch conditions. This

set of branch conditions created for any path forms a system of equalities and

inequalities. This system describes the subset of the input domain that causes the path

to be executed. Solving the systems of conditions of the generated paths gives test

data that cause the paths to be executed, and hence fulfils the branch coverage

criterion.

For each possible policy used for the generation of the paths, infeasible paths may

be chosen, and so the paths cannot actually satisfy the branch testing criterion.

 To cope with this problem, the path generation and the symbolic execution

modules have been merged. The actions performed by the merged modules are as

follows:

1. The path generation module finds a path Pu that covers an unconstrained arc eu.

2. The symbolic execution module symbolically executes Pu, and creates a system of

branch conditions for it.

3. The system presents the conditions to the feasibility checking module to check

their consistency. If the system of conditions of Pu is consistent (i.e. soluble), the

path is feasible. In this case, the system adds Pu to , then selects an as yet

uncovered unconstrained arc eu, and goes to step 1. On the other hand, if the

system of conditions of Pu is inconsistent, the path is infeasible and needs to be

replaced. Information about the combination of arcs that form this infeasible path

is stored in a table. This information can be used in the path generation phase to

prevent the future construction of paths containing these (infeasible) combinations

of arcs.

4. The system constructs a new path to cover arc eu as follows: Let S be a subpath in

G, S = e0, … , eu, … , ek, where e0, … , eu is the dominance path in DT(G)

between e0 and eu, and eu, … , ek is the implication path in IT(G) between eu and

ek. By filling in any possible way the discontinuities in S, the set of all paths from

Infeasible

path

Symbolic

Execution Module

Inputs

Inputs Outputs
PUT

Analysis

Module

Path Generation

Module

No. of Killed

Mutants

CFG, DDG, DT,

IT, UE

User

Outp

uts

Test Execution

Module

Feasibility

Checking Module

(Conditions Solving

Module)

Test path

Outputs

Inputs

System of Path

Conditions

Outputs

Inputs

Set of test inputs

Outputs

Inputs

Inputs

e0 to ek and containing eu, can be obtained. So, to obtain a new path through eu, the

system fills the discontinuities in S with new subpaths, taking into account that

information about the infeasibility of Pu that has been saved [12].

5. Then, the new path is given to the symbolic execution module and steps 2 through

4 are repeated until a feasible path that covers arc eu is found. It should be noted

that it is possible to find an infeasible path that cannot be replaced with a feasible

one.

6. Steps 1 through 5 are repeated until a path cover  is obtained that consists only

of feasible paths.

During the generation of a path, the system accesses the table of impossible

combinations of arcs to check its infeasibility. In particular, SELECT_AN_ARC can

select the next unconstrained arc from a smaller subset, obtained by eliminating from

the set UE all those arcs recognized (and stored in the table) as impossible to combine

with the arc already chosen in the path being constructed.

At the completion of the path generation process, a report is produced containing

the unconstrained arcs covered by each generated path, in addition to the ones that

cannot be covered by any feasible path, if any.

In this way a path cover  containing feasible paths that fulfil the branch coverage

criterion, and a system of branch conditions for each one of these paths, are obtained.

The final task is to solve the systems of conditions in order to generate test data to

cover all the branches of the program.

3.5 Test execution module

This module executes the original program and its mutants using the test inputs

which are yielding from solving the consistency systems of conditions for each

feasible path. Then, this module finds the killed mutants.

4 The Experiments

This section describe the experiments that have been carried out in order to evaluate

the error-exposing ability of the system and the data generated by applying the two

arc selection policies, the min-no-of-paths and the less-pred, used by the path

generation algorithm.

In these experiments, nine programs were selected and seeded with errors one at a

time. In each case, the erroneous program was analysed and two path cover sets were

generated by applying the two arc selection policies. Then, the paths of the two sets

were symbolically executed by the system, and systems of inequalities were

produced. The erroneous program was executed with the data generated by solving

the inequalities. The output of this execution was compared with the correct output,

which was obtained by executing the correct program with the same data. The success

of the system in discovering the error is judged by:

1. the appearance of data-flow anomaly messages during the symbolic execution of

the erroneous program.

2. the occurrence of any change in the form of the inequalities or their consistency

(i.e. consistent inequalities of the correct program become inconsistent, and vice

versa).

3. the generation of different symbolic output from symbolically executing the same

path in the correct program and in the erroneous one.

4. the occurrence of a deviation in the actual output.

The errors that were seeded into programs in these experiments fall into two

categories: domain errors and computation errors. The definitions of these two

categories are given by [20]. Table 2 shows these errors and their frequencies in the

experiments.

The results of the experiments were analyzed. The effectiveness of the system with

each arc selection policy was studied with respect to all the seeded errors, all the

seeded errors of each category, and all the seeded errors of each type.

The results of the experiments showed that:

 with min-no-of-paths policy, 89 out of 101 errors were discovered, which

represents 88% of all seeded errors. The undiscovered errors were: 2 of type D1,

1 of type D2, 2 of type D3, 3 of type D4, 1 of type C2, and 3 of type C3.

 with less-pred policy, 92 out of 101 errors were discovered, which represents

91% of all seeded errors. The undiscovered errors were: 2 of type D3, 2 of type

D4, 3 of type C3, 1 of type C2, 1 of type C5.
Table 2. The types of seeded errors and their frequencies

Code Error type Error Frequency

C Computation errors

C1 wrong variable definition 5

C2 wrong arithmetic operator 13

C3 wrong variable reference 23

C4 incorrect constant value 10

C5 statement wrongly placed 5

C6 missing computation 7

C7 a variable replaced by a constant 3

 66

D Domain errors

D1 wrong relational operator 12

D2 a variable replaced by a constant 5

D3 wrong variable reference 9

D4 incorrect constant value 9

 35

 101

These results indicate that the path covers generated by using the less-pred policy

have higher ability of discovering errors than those generated by using the min-no-of-

paths policy.

Tables 3 and 4 show the discovered errors during executing of the proposed

technique. Some of the seeded errors were discovered during the symbolic execution

of the erroneous program by the data flow anomaly messages, the generation of

inconsistent (consistent) inequalities which should be consistent (inconsistent), or the

generation of different symbolic output for the same path in the correct program and

in the erroneous one. Others were discovered by comparing the results of executing

the erroneous program and the correct one with the same data, which were generated

by solving the systems of inequalities produced by the system for the erroneous

program. We can see that some errors were discovered by more than one of the above

methods.

Table 3. Number of Discovered Errors by Minimum Number of Paths Criterion.

Comparing

Results

Data Flow

Anomaly

Comparing

Inequalities

Comparing

Symbolic Output

Symbolic

Execution

No. of

Discovered

Errors

Computation Errors 35 20 20 50 63 63

Domain Errors 17 1 21 1 21 26

Total 52 21 41 51 84 89

From these tables, it can be seen that most of the errors were discovered during the

symbolic execution of the erroneous programs along the paths generated by applying

both arc selection policies.

Figure 7 shows the percentage of computation and domain errors discovered using

the path cover generated by applying the min-no-of-paths policy and the less-pred

policy. By comparing the percentage of errors discovered, it can be seen that the path

cover of the min-no-of-paths policy has discovered more computation errors than that

of the less-pred policy, while the path cover of the less-pred policy has discovered

more domain errors than that of the min-no-of-paths policy.
Table 4. Number of Discovered Errors by Less-Predicates Criterion.

Comparing

Results
Data Flow Anomaly

Comparing

Inequalities

Comparing

Symbolic

Output

Symbolic

Execution

No. of

Discovered

Errors

Computation

Errors
38 21 20 50 61 61

Domain Errors 24 1 24 1 24 31

Total 62 22 44 51 85 92

Fig. 7. The percentage of computation and domain errors discovered by the min-no-of-paths policy and

the less-pred policy.

Table 5. Number and percentage of errors of each type discovered with the path cover generated by

applying the two arc selection policies.

 Less-Pred Policy Min-No-of-Paths Policy

Error Type Comparing

Results

Symbolic

Execution

Comparing

Results

Symbolic

Execution

C1 5 100% 5 100% 5 100% 5 100%

C2 6 46.2% 12 92.3% 6 46.2% 12 92.3%

C3 12 52.2% 20 87% 11 47.8% 21 91.3%

C4 7 70% 10 100% 5 50% 10 100%

C5 3 60% 4 80% 3 60% 5 100%

C6 3 42.9% 7 100% 3 42.9% 7 100%

C7 2 66.7% 3 100% 2 66.7% 3 100%

D1 11 91.7% 9 75% 8 66.7% 8 66.7%

D2 4 80% 5 100% 3 60% 4 80%

D3 3 33.3% 5 55.6% 3 33.3% 5 55.6%

D4 6 66.7% 5 55.6% 3 33.3% 4 44.4%

Tables 5 shows the number and percentage of errors of each type discovered either

during symbolic execution or by comparing results, using the path cover generated by

applying the two arc selection policies. It can be seen from Table 5 that, with both

policies, most of the errors of type C2, C3, C4, C5, C6, C7, D2 and D3 were

discovered during the symbolic execution, and the errors of type C1 were discovered

during the symbolic execution and by comparing results with the same percentage.

The two policies differ in the ability of discovering the errors of type D1 and D4.

With the less-pred policy, comparing results discovered more errors of these types

than the symbolic execution. With the min-no-of-paths policy, the errors of type D1

were discovered during the symbolic execution and by comparing results with the

same percentage, but the symbolic execution discovered more errors of type D4 than

comparing results.

5 Conclusions

The paper presented an empirical study of the use of symbolic execution to aid the

generation of test data for mutation testing. A symbolic execution system has been

developed to automatically generate a set of program paths that satisfy the branch

coverage criterion by implementing the path selection algorithm (FTPS) proposed by

[12]. The system symbolically executes the generated set of paths and creates a

system of branch conditions for each one. By solving the systems of conditions of the

feasible paths one can obtain test data for mutation testing.

Experiments have been carried out to evaluate the error-exposing ability of the

system. The results showed that the path covers generated by using the less-pred

policy have higher ability of discovering errors than those generated by using the min-

95%

74%
92% 89%

Computation Errors Domain Errors

The percentage of computation and domain errors discovered by the two criteria

Minimum Number of Paths Criterion Less-Predicates Criterion

no-of-paths policy. The results also showed that most of the errors were discovered

during the symbolic execution of the erroneous programs along the paths generated

by applying both arc selection policies. More empirical studies will do in the future

work to compare the proposed technique with other mutation testing techniques.

References

1. P. G. Frankl and S. N. Weiss. An experimental comparison of the effectiveness of

branch testing and data flow testing. IEEE Transactions on Software Engineering,

19(8), 774-787, 1993.

2. R. S. Boyer, B. Elspas and K. N. Levitt. SELECT - a formal system for testing and

debugging programs by symbolic execution. Proceedings of the International

Conference on Reliable software, 234-245, 1975.

3. L. A. Clarke. A system to generate test data and symbolically execute programs.

IEEE Transactions on Software Engineering, 2(3), 215-222, 1976.

4. J. C. King. Symbolic execution and program testing. Communications of the ACM,

19 (7), 385-394, 1976.

5. W. E. Howden. Symbolic testing and the DISSECT Symbolic evaluation system.

IEEE Transactions on Software Engineering, 3(4), 266-278. 1977.

6. D. Hedley and M. A. Hennell. The causes and effects of infeasible paths in computer

programs. Proceedings of Eighth International Conference on Software Engineering,

IEEE Computer Society, 259-266. 1985.

7. T. E. Lindquist and J. R. Jenkins. Test-case generation with IOGen. IEEE Software, 5

(1), 72-79, 1988.

8. C. Cadar, P. Godefroid, S. Khurshid, C. S. Pasareanu, K. Sen, N. Tillmann, and W.

Visser. Symbolic execution for software testing in practice–preliminary assessment.

ICSE ’11, 2011.

9. J. Jaffar, J. A. Navas, and A. E. Santosa. Unbounded symbolic execution for program

verification. Lecture Notes in Computer Science, vol. 7186, pp 396-411, 2012.

10. M. R. Girgis. An experimental evaluation of a symbolic execution system, Software.

Engineering Journal. 7(4), 285-290, 1992.

11. M. R. Girgis, Using symbolic execution and data flow criteria to aid test data selection.

The Journal of Software Testing, Verification and Reliability, 3(2), 101-112, 1993.

12. Bertolino, and M. Marre. Automatic generation of path covers based on the control flow

analysis of computer programs. IEEE Transactions on Software Engineering, 20 (12),

885-899, 1994.

13. D. F. Yates, N. Malevris. Reducing the effects of infeasible paths in branch testing.

ACM SIGSOFT Software Engineering Notes, vol. 14, , pp. 48-54, 1989.

14. Y. Jia, and M. Harman. Higher order mutation testing. Journal of Information and

Software Technology, Vol. 51, 10, pp. 1379–1393, 2009.

15. Burnstein. Practical software testing: a process-oriented approach. Springer, 2003.

16. R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for

the practicing programmer. IEEE Computer, vol. 11, 4, pp. 34–41, 1978.

17. R. G. Hamlet. Testing programs with the aid of a compiler. IEEE Transactions on

Software Engineering SE-3, vol. 4, pp. 279–290, 1977.

18. M. R. Girgis and M. R. Woodward. An integrated system for program testing using

weak mutation and data flow analysis. Proceedings of Eighth International Conference

on Software Engineering, IEEE Computer Society, pp. 313-319, 1985.

19. M. S. Hecht. Flow analysis of computer programs. Elsevier North Holland, New York,

1977.

20. L. J. White and E. I. Cohen. A domain strategy for computer program testing. IEEE

Transactions on Software Engineering, 6(3), 247-257, 1980.

21. C. Cadar and K. Sen, "Symbolic execution for software testing: three decades later"

Communications of the ACM, Vol. 56 Issue 2, pp. 82-90, 2013 .

